高解析度之國語類音素單元端點自動標示 (Sample-based Phone-like Unit Automatic Labeling in Mandarin Speech) [In Chinese]

نویسندگان

  • You-Yu Lin
  • Yih-Ru Wang
چکیده

This paper presents a sample-based phone boundary detection algorithm which can improve the accuracy of phone boundary labeling in speech signal. In the conventional phone labeling method adopted the frame-based approach, some acoustic features, like MFCCs, are used. And, the statistical approaches are employed to find the phone boundary based on these frame-based features. The HMM-based forced alignment method is most frequently used method. The main drawback of the frame-based approach lies in incapability of modeling rapid changes in speech signal; moreover, the time resolution of this approach is too coarse for some applications. To overcome this problem, a sample-wise phone boundary detection framework is proposed in this study. First, some sample-wise acoustic features are proposed which can properly model the variation of speech signal. The simple-based spectral KL distance is first employed for boundary candidates pre-selection in order to reduce the complexity of sample-based methods. Then, a supervised neural network is trained for phone boundary detection. Finally, the effectiveness of the proposed framework has been validated on automatic labeling of TCC-300 speech corpus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

完全基於類神經網路之語音合成系統初步研究 (A Preliminary Study on Fully Neural Network-based Speech Synthesis System) [In Chinese]

A Preliminary Study on Fully Neural Network-based Speech Synthesis System 廖書漢 SHU-HAN Liao ,蔡亞伯 YaBo Chai , 廖元甫 a Yuan-Fu Liao, a 國立台北科技大學電子工程系 [email protected], [email protected], [email protected] 摘要 傳統的語音合成使用先文字分析後語音合成的架構,但是這種兩階段的作法, 通常會有,若前級分析錯誤,就會影響後級合成,且無法挽救的問題。因此,在 本論文中我們希望嘗試把前後級,全部都改成以類神經網路實現,以便將來可以 直接合成一個大的端對端語音合成類神經網路。主要的想法是,直接以字元串為 輸入單位,並盡量用大量未標記語料,進行非監督式類神經網路訓練。我們的系 統包含四個子網路,分...

متن کامل

利用聲學與文脈分析於多語語音辨識單元之產生 (Generation of Phonetic Units for Multilingual Speech Recognition Based on Acoustic and Contextual Analysis) [In Chinese]

摘要 由於全球化趨勢之盛行,多語語音常出現於會議紀錄及一般對話等方面。對於會議紀錄及對話系統而 言,多語語音自動辨識日顯重要。在多語語音自動辨識中,辨識單元集之定義及選取,將影響辨識之效率 及效能。本論文針對中英文利用 IPA 定義之多語語音辨識單元集,考慮前後文相關之三連音模型,並進一 步透過對聲學相似度與前後文脈分析,決定一組精簡有效的多語辨識單元。在相似度矩陣分析中,首先我 們利用事後機率統計,建立聲學相似度矩陣,然後,基於發音共聲現象的考量,分析語音發音上之相似度。 本論文更引入語言超空間相似度之觀念,計算三連音辨識單元前後文脈之關係,建立語言超空間相似度矩 陣。最後利用資料融合技術,合併聲學相似度矩陣和語言超空間相似度矩陣,以計算三連音辨識單元間之 距離,而後利用向量量化群集方法合併相似性高之三連音辨識單元,建立一個有效的多語語音辨識單元 集。本論文以 EAT 中英雙語語料...

متن کامل

相似度比率式鑑別分析應用於大詞彙連續語音辨識 (Likelihood Ratio Based Discriminant Analysis for Large Vocabulary Continuous Speech Recognition) [In Chinese]

在近十年來所發展出的自動語音辨識(automatic speech recognition, ASR)技術中,仍 有許多研究者嘗試僅藉由前端處理來產生具有鑑別性的語音特徵,而獨立於後端模型訓 練與分類器特性。本論文即在此思維下提出嶄新的鑑別式特徵轉換方法,稱為普遍化相 似度比率鑑別分析(generalized likelihood ratio discriminant analysis, GLRDA),其旨在利 用相似度比率檢驗(likelihood ratio test)的概念尋求一個維度較低的特徵空間。在此子空 間中,我們不僅考慮了全體資料的異方差性(heteroscedasticity),即所有類別之共變異矩 陣可被彈性地視為相異,並且在分類上,因著我們也將類別間最混淆之情況(由虛無假 設(null hypothesis)所描述)的發生率降至最低,而達到有助於分類正確率提升的效...

متن کامل

透過語音特徵建構基於堆疊稀疏自編碼器演算法之婚姻治療中夫妻互動行為量表自動化評分系統(Automating Behavior Coding for Distressed Couples Interactions Based on Stacked Sparse Autoencoder Framework using Speech-acoustic Features)[In Chinese]

人與人之間交談互動,常透過語言傳達彼此的想法,並在這交談過程中得知雙方的行為 反應。利 用人為觀察來分析雙方行為反應,這種人為分析方式最早常應用在心理學和精神醫學方面 [2]。人 為行為觀察已經相當的成功用於研究親密關係 [3][4],因為夫妻的互動行為是影響親密關係程度的 重要因素之一。然而使用人為觀察行為的方式長年存在根本問題,一方面太消耗時間,另一 面也 主觀。 如果能透過電腦工程的方式來幫忙人為觀察將大大提升效率:即透過低層描述映射高層描 述來預測與分析人類行為 [5]。這項研究領域是一個新興的領域分。人類行為信號處理 (Behavioral Signal Processing, BSP)目的在幫助連接信號處理技術與行為分析的跨領域學科,建立在 傳統的信號 處理研究,如語音識別,面手部追蹤等等。相關顯著 BSP 研究已發產於以人為中心的提取音頻, 視頻信號,來分析高階人類行為...

متن کامل

整合邊際資訊於鑑別式聲學模型訓練方法之比較研究 (A Comparative Study on Margin-Based Discriminative Training of Acoustic Models) [In Chinese]

鑑別式聲學模型訓練在近代自動語音辨識(Automatic Speech Recognition, ASR)中扮演 重要的角色。在許多基於不同思維且能有效地提昇辨識率的鑑別式聲學模型訓練方法陸 續被提出後,對於訓練方法的相關推廣與改進便如雨後春筍般地興起;而這些方法在本 質上,皆是在描述訓練語句與語音辨識器所產生對應詞圖(Word Graph)之間的關係。本 論文首先將統整與歸納近年來所發展的多種鑑別式聲學模型訓練方法,並以三種最具代 表性鑑別式訓練方法:最小化分類錯誤(Minimum Classification Error, MCE)、最大化交 互資訊(Maximum Mutual Information, MMI)、最小化音素錯誤(Minimum Phone Error, MPE)為範例,透過有系統地轉換與化解方程式,得到聲學模型訓練準則的共通表示函 數型態。我們可以發現到,對於...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009